Search results for " phosphatase"

showing 10 items of 329 documents

Phosphoglycerate dehydrogenase genes differentially affect Arabidopsis metabolism and development.

2021

[EN] Unlike animals, plants possess diverse L-serine (Ser) biosynthetic pathways. One of them, the Phosphorylated Pathway of Serine Biosynthesis (PPSB) has been recently described as essential for embryo, pollen and root development, and required for ammonium and sulfur assimilation. The first and rate limiting step of PPSB is the reaction catalyzed by the enzyme phosphoglycerate dehydrogenase (PGDH). In Arabidopsis, the PGDH family consists of three genes, PGDH1, PGDH2 and PGDH3. PGDH1 is characterized as being the essential gene of the family. However, the biological significance of PGDH2 and PGDH3 remains unknown. In this manuscript, we have functionally characterized PGDH2 and PGDH3. Ph…

0106 biological sciences0301 basic medicineMutantArabidopsisPlant ScienceGenes Plant01 natural sciencesGene Expression Regulation EnzymologicSerine03 medical and health scienceschemistry.chemical_compoundSulfur assimilationBiosynthesisGene Expression Regulation PlantArabidopsisGeneticsSerinePhosphoglycerate dehydrogenaseGenePhosphoglycerate DehydrogenasePSPbiologyGeneral MedicinePhosphorylated pathway of serine biosynthesisbiology.organism_classificationBiosynthetic Pathways030104 developmental biologyPGDHBiochemistrychemistryEssential geneFISIOLOGIA VEGETALPhosphoserine phosphataseAgronomy and Crop Science010606 plant biology & botanyPlant science : an international journal of experimental plant biology
researchProduct

Regulation of plant NADPH oxidase.

2007

Addendum to: Regulation of Reactive Oxygen Species Production by a 14-3-3 Protein in Elicited Tobacco Cells. T. Elmayan, J. Fromentin, C. Riondet, G. Alcaraz, J. Blein and F. Simon-Plas. Plant Cell Environ 2007; 30:722–32; International audience; The production of Reactive Oxygen Species (ROS) is one of the key events occurring during the response of plants to environmental changes, and contributing to establish adaptive signaling pathways. A plasma membrane bound NADPH oxidase enzyme has been evidenced as the ROS producing system in various plant‑microorganisms interactions. We very recently reported, that a protein of the 14‑3‑3 family was able to interact directly with the C‑terminus par…

0106 biological sciencesMembrane boundContext (language use)Plant Science01 natural sciences[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health sciences[SDV.GEN.GPL] Life Sciences [q-bio]/Genetics/Plants geneticsNADPH OXIDASEPlant defense against herbivoryREACTIVE OXYGEN SPECIES14-3-3030304 developmental biologyPROTEINE PHOSPHATASE TYPE 2Cchemistry.chemical_classification0303 health sciencesReactive oxygen speciesOxidase testNADPH oxidasebiologyTWO-HYBRIDArticle AddendumEnzymeBiochemistrychemistryREGULATIONbiology.proteinSignal transduction010606 plant biology & botanyPlant signalingbehavior
researchProduct

Phosphoproteins Involved in the Signal Transduction of Cryptogein, an Elicitor of Defense Reactions in Tobacco

2000

We previously reported that the signal transduction of cryptogein, an elicitor of defense reactions in Nicotiana tabacum cells, involves upstream protein phosphorylation. In the present study, induction of these early physiological events was further investigated with inhibitors of protein phosphatase (PP), okadaïc acid, and calyculin A. Calyculin A mimicked the effects of cryptogein, inducing an influx of calcium, an extracellular alkalinization, and the production of active oxygen species (AOS), suggesting that during cryptogein signal transduction the balance between specific protein kinase (PK) and PP activities was modified. To identify the phosphorylated proteins that could be involv…

0106 biological sciencesPhysiologyPhosphataseBiology01 natural sciencesFungal Proteins03 medical and health scienceschemistry.chemical_compound[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]TobaccoPhosphoprotein Phosphatasesmedicine[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyStaurosporineProtein phosphorylationEnzyme InhibitorsPhosphorylationProtein Kinase InhibitorsComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesFungal proteinIon TransportAlgal ProteinsGeneral MedicinePhosphoproteinsElicitorPlants ToxicchemistryBiochemistryPhosphorylationCalciumSignal transductionAgronomy and Crop ScienceSignal Transduction010606 plant biology & botanyCalyculinmedicine.drugMolecular Plant-Microbe Interactions®
researchProduct

Underwater high frequency noise: Biological responses in sea urchin Arbacia lixula (Linnaeus, 1758)

2020

Marine life is extremely sensitive to the effects of environmental noise due to its reliance on underwater sounds for basic life functions, such as searching for food and mating. However, the effects on invertebrate species are not yet fully understood. The aim of this study was to determine the biochemical responses of Arbacia lixula exposed to high-frequency noise. Protein concentration, enzyme activity (esterase, phosphatase and peroxidase) and cytotoxicity in coelomic fluid were compared in individuals exposed for three hours to consecutive linear sweeps of 100 to 200 kHz lasting 1 s, and control specimens. Sound pressure levels ranged between 145 and 160 dB re 1μPa. Coelomic fluid was …

0106 biological sciencesPhysiologyPhosphataseZoology01 natural sciencesBiochemistryEsteraseHemolysis03 medical and health sciencesbiology.animalAnimalsHomeostasisHSP70 Heat-Shock ProteinsMatingSettore BIO/06 - Anatomia Comparata E CitologiaMolecular BiologySea urchinArbacia lixulaHSP70030304 developmental biologyInvertebrateCell ProliferationPeroxidaseArbacia0303 health sciencesbiologyEchinoderm010604 marine biology & hydrobiologyEsterasesMarine invertebrateMarine invertebratesbiology.organism_classificationAlkaline PhosphataseAcoustic stimuluEnzyme assayCoelomomycesBody Fluidsbiology.proteinMetabolomePhysiological stress.Noise
researchProduct

Alkaline phosphatase survey in pecorino siciliano PDO cheese

2021

The determination of alkaline phosphatase (ALP) in cheeses has become an official method for controlling cheeses with a protected designation of origin (PDO), all of which use raw milk. PDO cheeses, characterized by high craftsmanship, usually have an uneven quality. However, for these cheeses, it is necessary to establish ALP values so that they can be defined as a raw milk product. In this study, a dataset with Pecorino Siciliano PDO samples was analyzed to determine ALP both at the core and under the rind. The results showed that there was no significant difference between the different zones in Pecorino cheese. A second dataset of 100 pecorino cheese samples determined that ALP was only…

0106 biological sciencesSettore AGR/19 - Zootecnica SpecialeHealth (social science)PasteurizationPlant ScienceTP1-118501 natural sciencesHealth Professions (miscellaneous)Microbiologylaw.inventionlaw010608 biotechnologyraw milk determinationFood science040502 food scienceChemistryCommunicationChemical technologySignificant difference04 agricultural and veterinary sciencesRaw milkPDO Pecorino Siciliano cheeseAlkaline phosphatasealkaline phosphatase determination0405 other agricultural sciencesFood Science
researchProduct

Phospholipase activities associated with the tonoplast from Acer pseudoplatanus cells: identification of a phospholipase A1 activity

1995

In higher plants, the lipolytic enzymes and their physiological functions are not well characterized [1]. Most reports demonstrated that phospholipid catabolism in plants is achieved by the concerted actions of membrane-bound enzymes including phospholipase D, phosphatidate phosphatase, lipolytic acyl hydrolases and lipoxygenases [1,2]. With the exception of the phospholipase D, the literature on plant phospholipases is still very limited. We previously reported that tonoplast from Acer pseudoplatanus cells contains small amounts of phosphatidc acid and lysophospholipids, which were produced together with free fatty acids, particularly after addition of Ca2+[3]. These data suggested the pos…

0301 basic medicine0106 biological sciencesCations DivalentOctoxynol[SDV]Life Sciences [q-bio]BiophysicsVacuolePhospholipase01 natural sciencesBiochemistryPhospholipases ATrees03 medical and health scienceschemistry.chemical_compoundPhospholipase A1Phospholipase A1Phospholipase DCells CulturedComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesPhospholipase AbiologyChemistryPhospholipase DPhosphatidic acidCell BiologyHydrogen-Ion ConcentrationAcer pseudoplatanusPhosphatidate phosphatasebiology.organism_classificationPhospholipases A1[SDV] Life Sciences [q-bio](Acer pseudoplatanus)030104 developmental biologyBiochemistryVacuolesCalciumTonoplast010606 plant biology & botanyBiochimica et Biophysica Acta (BBA) - Biomembranes
researchProduct

Polyphosphate as a donor of high-energy phosphate for the synthesis of ADP and ATP.

2017

Here, we studied the potential role of inorganic polyphosphate (polyP) as an energy source for ADP and ATP formation in the extracellular space. In SaOS-2 cells, we show that matrix vesicles are released into the extracellular space after incubation with polyP. These vesicles contain both alkaline phosphatase (ALP) and adenylate kinase (AK) activities (mediated by ALPL and AK1 enzymes). Both enzymes translocate to the cell membrane in response to polyP. To distinguish the process(es) of AMP and ADP formation during ALP hydrolysis from the ATP generated via the AK reaction, inhibition studies with the AK inhibitor A(5')P5(5')A were performed. We found that ADP formation in the extracellular …

0301 basic medicineAdenylate kinaseBiologydigestive systemExocytosisCatalysisCell membrane03 medical and health scienceschemistry.chemical_compound0302 clinical medicineAdenosine TriphosphatePolyphosphatesExtracellularmedicineTumor Cells CulturedHumansPhosphorylationchemistry.chemical_classificationATP synthasePolyphosphateAdenylate KinaseCell BiologyAlkaline PhosphataseAdenosine DiphosphateKinetics030104 developmental biologyEnzymemedicine.anatomical_structurechemistryBiochemistry030220 oncology & carcinogenesisbiology.proteinEnergy sourceEnergy MetabolismExtracellular SpaceJournal of cell science
researchProduct

Green Tea Catechins Induce Inhibition of PTP1B Phosphatase in Breast Cancer Cells with Potent Anti-Cancer Properties: In Vitro Assay, Molecular Docki…

2020

The catechins derived from green tea possess antioxidant activity and may have a potentially anticancer effect. PTP1B is tyrosine phosphatase that is oxidative stress regulated and is involved with prooncogenic pathways leading to the formation of a.o. breast cancer. Here, we present the effect of selected green tea catechins on enzymatic activity of PTP1B phosphatase and viability of MCF-7 breast cancer cells. We showed also the computational analysis of the most effective catechin binding with a PTP1B molecule. We observed that epigallocatechin, epigallocatechin gallate, epicatechin, and epicatechin gallate may decrease enzymatic activity of PTP1B phosphatase and viability of MCF-7 cells.…

0301 basic medicineAntioxidantPhysiologymedicine.medical_treatmentClinical BiochemistryPhosphataseProtein tyrosine phosphataseEpigallocatechin gallateBiochemistrycomplex mixturesArticle03 medical and health scienceschemistry.chemical_compound0302 clinical medicinebreast cancermedicineheterocyclic compoundsViability assayMolecular Biologyepigallocatechinprotein tyrosine phosphatase inhibitorChemistrylcsh:RM1-950food and beveragesPTP1BCell BiologyCatechin bindingIn vitro030104 developmental biologyEpicatechin gallatelcsh:Therapeutics. PharmacologyBiochemistrySettore CHIM/03 - Chimica Generale E Inorganica030220 oncology & carcinogenesissense organshormones hormone substitutes and hormone antagonistsgreen tea catechinsAntioxidants
researchProduct

Endocytosis of the glutamate transporter 1 is regulated by laforin and malin: Implications in Lafora disease.

2020

Postprint 36 páginas, 7 figuras

0301 basic medicineArrestinsAmino Acid Transport System X-AGPhosphataseProgressive myoclonus epilepsyBiologyEndocytosisLafora diseaseArticle03 medical and health sciencesCellular and Molecular NeuroscienceMice0302 clinical medicineUbiquitinmedicineAnimalsNedd4.2Lafora diseaseGlutamate receptorUbiquitinationTransportermedicine.diseaseProtein Tyrosine Phosphatases Non-ReceptorEndocytosisCell biologyGLT-1030104 developmental biologyNeurologyLafora Diseasebiology.proteinGlutamateLaforin030217 neurology & neurosurgeryGlia
researchProduct

Fine-Tuning of Platelet Responses by Serine/Threonine Protein Kinases and Phosphatases-Just the Beginning.

2021

AbstractComprehensive proteomic analyses of human and murine platelets established an extraordinary intracellular repertoire of signaling components, which control crucial functions. The spectrum of platelet serine/threonine protein kinases (more than 100) includes the AGC family (protein kinase A, G, C [PKA, PKG, PKC]), the mitogen-activated protein kinases (MAPKs), and others. PKA and PKG have multiple significantly overlapping substrates in human platelets, which possibly affect functions with clear “signaling nodes” of regulation by multiple protein kinases/phosphatases. Signaling nodes are intracellular Ca2+ stores, the contractile system (myosin light chains), and other signaling comp…

0301 basic medicineBlood PlateletsProteomicsThreonineMyosin Light ChainsPhosphataseSerine threonine protein kinase030204 cardiovascular system & hematology03 medical and health sciencesMice0302 clinical medicinePhosphoprotein PhosphatasesSerineAnimalsHumansSyk KinasePlatelet activationProtein kinase AProtein kinase CKinaseChemistryHematologyProtein phosphatase 2Platelet ActivationCell biology030104 developmental biologyModels AnimalMitogen-Activated Protein KinasesTyrosine kinaseProtein KinasesSignal TransductionHamostaseologie
researchProduct